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MINIMUM-CROSS-ENTROPY SPECTRAL ANALYSIS OF MULTIPLE SIGNALS

I. INTRODUCTION AND BACKGROUND

We present here an information-theoretic method for simultaneously

estimating a number of power spectra when a prior estimate of each is

available and new information is obtained in the form of values of the

autocorrelation function of their sum. The method applies for instance when

one obtains autocorrelation measurements for a signal with independent

additive interference, and one has some prior knowledge concerning the signal

and the noise spectra; the result is signal- and noise-spectrum estimates that

take both the prior estimates and the autocorrelation information into

account. One thus obtains a procedure for noise suppression that offers some

advantages over more traditional procedures, such as those based on spectral

subtraction.

The present method is a generalization of minimum-cross-entropy spectral

analysis [1], which is in turn a generalization of maximum-entropy (or

linear-predictive or autoregressive) spectral analysis t2j, [3]. All these

methods proceed from autocorrelation values. Minimum-cross-entropy spectral

analysis (MCESA) differs from maximum-entropy spectral analysis (MESA) in that

it explicitly uses a prior estimate of the power spectrum; it reduces to MESA

as a special case when the prior estimate is uniform and one of the given

autocorrelation values is for zero lag. The present method, multi-signal

HCESA, differs from MCESA in that it treats an arbitrary number of independent

Manuscript submitted February 17, 1981. Ii



spectra simultaneously; in the special case of a single spectrum, it becomes

identical to MCESA.

MESA may be regarded as an application of the principle of maximum entropy

[41, 15]; single- and multi-signal MCESA are applications of a generalization

of that principle, the principle of minimum cross entropy (also called minimum

discrimination information, directed divergence, I-divergence, relative

entropy, or Kullback-Leibler number) [6], [7], [8], [9], [101, I11]. In the

remainder of this section, we describe these spectrum-analysis methods further

and include some background on the principle of minimum cross entropy.

Section II contains a derivation of our multiple-signal estimator, and section

III discusses a few of its general properties. Section IV presents two

numerical examples, one of which is based on measured samples of speech

signals and noise. Finally, section V contains a concluding discussion.

A. MESA and MCESA

MESA addresses the following problem: estimate the power spectrum S(f) of

a real, band-limited, stationary process, given values of the autocorrelation

function

R(t) 2 df S(f)cos 2irft

for finitely many lags t = tr, r = 0,..., M. (Here W is the bandwidth.)

The solution proposed by Burg i2], [3] is to choose the estimate Q of S that

maximizes

df log Q(f) (11

0
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subject to the constraint that the autocorrelation function assume the given

values:

R(tr) = 2 df Q(f)cos 2'rftr (2)0r

The resulting estimator has the form

1

Q(f) , (3)

r 2PrC°S 2tftr

where the coefficients Ar (r - O,...,M) are chosen so that Q satisfies (2).

MCESA is applicable to the problem of estimating S(f) when, in addition to

the autocorrelation values, a prior estimate P of S is given; P may be thought

of as the best guess at S we could make in the absence of autocorrelation

data. The MCESA estimator has the form il]

1

Q(f) = , (4)
1/P(f) + Ir 2Prcos 2rftr

where again the Ar are chosen so that Q satisfies the constraints (2). We

call Q the posterior estimate of S based on the prior estimate P and

constraints (2). This estimator can be obtained directly from the

minimum-cross-entropy principle [1); it can also be obtained by minimizing the

Itakura-Saito distortion measure 1121

subject to (2) iL]. When P(f) is uniform, and one of the autocorrelation

values is at lag zero (say t0 . 0), we can write (4) in the form (3), since
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the constant 1/P can be absorbed into the coefficient Thus in this case

MCESA reduces to MESA.

For multi-signal MCESA, the problem is to estimate the power spectra

S.(f) of a number of indepedent processes, given values of the total

autocorrelation

R(t) = 2 Z C Wdf Si(f)cos 2irft
• J 0

and a prior estimate P. for each S.. The estimator has the form
I I

I
Qi(f) = f (5)

l/Pi(f) + Xr 2Pcos 2wft r

where the Pr are chosen so that the constraint equations

R(t ) 2d Q(f)cos rft (6)r Z r

are satisfied. Note that the suumation term in the denominator in (5) is

independent of i. In Section III we derive the estimates (5) directly from

the principle of minimum cross entropy. We also show that they can be

obtained by minimizing the sum

Sdf- log
P () p (f)

of Itakura-Saito distortions subject to the constraints (6). Equations (5)

and (6) reduce to (4) aud (2) when there is only one spectrum Si; thus

multi-signal MCESA reduces to ordinary MCESA in case there is only one

signal.

4



B. Cross-Entropy Minimization

The principle of minimum cross entropy is a general method for inference

about probability distributions when information is avaliable in the form of

expectation values of known functions.

Let qt be a probability density on a space of states x of some system.

Suppose that qt is not known, but there is some prior density p (on the same

space) that is our current estimate of qt. Now suppose we gain new

information about qt in the form of expectation values

dx qt(x)g W - 9)7

of known functions gr" In general, these constraints do not detdrmine qt

uniquely: the equations (7) are satisfied by other densities q than qt (but

not necessarily by p). The problem to be solved is, given p and the

constraints (7), to make the best possible choice of a new (or posterior)

estimate q of qt. The principle of minimum cross entropy states that one

should choose that density q, among all the densities that satisfy the

constraints, that has the least cross entropy

H(q,p) Sdx q(x)log(q(x)/p(x)) (8)

with respect to p.

Given a positive prior probability density p, if there exists a posterior

q that minimizes the cross entropy and satisfies the constraints (7), it has

the form

q(.) p(x) exp(.. ..- .. .il IIrl
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with the possible exception of a set of states on which the constraints imply

that q vanishes [6, p. 381, J101. In (9), A and Pr are Lagrange multipliers

whose values are determined by the normalization constraint

dx q(x) (10)

and by the constraints (7), respectively. Conversely, if there are values

for A and the 0r for which the constraints are satisfied, then the solution

exists and is given by (9) [10]. Conditions for existence of solutions are

given by Csiszar l10].

One could imagine using a procedure based on minimization of some function

of q and p other than H(q,p). In what sense does minimizing cross entropy

yield the best estimate q of qt7 One answer to this question is provided by

recent work 17] that characterizes cross-entropy minimization as ar inference

procedure by means of certain consistency axioms. In describing this work, it

is usful to view an inference procedure as an operator * that takes two

arguments, a prior probability density p and new constraint information I of

the form (7), and yields a posterior probability density pal. It is assumed

in 17] that 0 is implemented by minimization of some well behaved function

H'(qp) -- that is, that q = pal is defined as that density, among all the

densities that satisfy the constraints I, for which H'(q,p) is least. It is

further assumed that the operator 0 satisfies consistency axioms that,

informally, require different ways of taking information I into account (for

example, in different coordinate systems) to lead to equivalent results. It

is then shown to follow from the assumptions that paI equals the result of

minimizing the cross entropy H(q,p). The axioms do not imply that H' must be

H -- for instance a monotonic function of H would do just as well -- but they

6



do uniquely characterize the result pol of the minimization: cross-entropy

minimization is uniquely correct in the sense that minimization of any other

functional either gives the same result or leads to a contradiction with one

of the axioms.

Other justifications for the use of cross-entropy minimization can be

based on cross entropy's properties as an information measure [6], (10], [13],

(14]. For instance, H(q,p), informally speaking, measures the distortion,

"information dissimilarity," or "information divergence" of q from p. H(q,p)

can be interpreted as the amount of information needed to change a prior p

into the posterior q or to determine q given p [141; indeed,

H(q,p) = H(qt,p) - H(qt,q) (11)

holds when q - poI is defined by cross-entropy minimization [101, [A4] In

these terms the minimum-cross-entropy principle is intuitively justified as

the choice of posterior q that introduces the least distortion, least

additional information, or fewest unjustified assumptions consistent with the

given constraints. From (11) it follows that H(qttq) 4 H(qt,p). Thus the

posterior q is closer to qt in the cross-entropy sense than is the prior p.

Yet another justification for cross-entropy minimization is provided by

the "expectation-matching" property 114], which states that for an arbitrary

fixed density q* and densities q of the form (9), H(q*,q) is least when the

expectations of q match those of q*. In particular, it follows that q = poI

is not only the density satisfying (7) that minimizes H(q,p), but also the

density of the form (9) that minimizes H(qtq). Hence pol is not only

closer to qt than is p, but it is the closest possible density of the form

(10). The expectation-matching property is a generalization of a property of
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orthogonal polynomials t15, p.12] that, in the case of speech analysis L16],

is called the "correlation-matching property" 1I, ch. 2]. For further

justifications see 17], [14].

II. DERIVATION

We assume the time-domain signal is a sum of stationary random processes

g(t), i ,..., K. In many applications, K will be 2 -- one signal

process and one noise process -- but the case of arbitrary K is no harder than

K = 2, so we do the derivation in that generality. It is convenient to work

with discrete-spectrum approximations to the gi [I], L18],

N
si(t) = I (aikcos 21rfkt + biksin 2lrfkt) ,

k 1

where the a ik and the bik are random variables and the fk are non-4ero

frequencies, not necessarily uniformly spaced. We write Xik for the power

of the process si at frequency fk'

x 1a2 +b2Xik (ai + b. ) ,

ik 2 ik ik

and will describe the processes in terms of a joint probability density

qt(x) = qt(x1l.''' K), where x. stands for (x... , xiN). The

marginal density for each x. is defined by1

I S zj*i -

where each component xjk of the variables of integration ranges from 0 to .

jk



Let Pik =  i (fk) be prior estimates of the power spectra of the

si . Then we may take

N

Pi(i ) = T (I/Pik )exp(-xik /Pik (12)
k-1

as prior estimates of q!(x ). The assumed exponential form is

equivalent to a Gaussian distribution in the amplitude variables aik and

bik; for justification of its use, see 1li, (191. Note that the

coefficients are chosen so that the expected value of the power Xik of the

process si at frequency fk is equal to the prior estimate:

Pi = (dxipi(x.)x "

Since we assume independence of x. and x (i~j), our prior estimate of

qt becomes

K N
p(x) W TT fT (1/P )exp(-x /P (13)

i1 -i ik (xik/PAk
i=l k-l

The spectral power of each process si at frequency fk is given by

Tik = d, qt(x)xik , (14)

and the autocorrelation function of each s. is

Rir = cTrk T , (15)
k-l

wherec rk 2 cos 2tr fk Suppose we obtain information about qt in

9



the form of autocorrelation values for the sum of the si,

K
Rr = X Rir

i-i

r - 0,..., M, where t0 = 0. In view of (14) and (15), this has the form of

linear constraints on expectation values of qt:

K N
R =ldx qt(x) i k Ckik " (16)

r i-i k-i

Applying the principle of minimum cross entropy to the prior (13) and

constraints (16) yields a posterior estimate q of qt given by

M K N

q(x) = p(x)exp - A 0 1 CrkX

eAK N
e k= (l/Pik)exp Xik/Pik

i-Ik~l ik ik r;. r~kxikl

e K N )

where A and their are Lagrange multipliers corresponding to the constraints

(10) and (16), respectively, and Aik ' lP ik + rIrcrk. Because of

the normalization constraint (10), this becomes

K N
q(j) - TT Aikexp(-Aikxik) • (17)

The posterior estimate of the power spectrum of s. is

Q d q(xx -1ik =  q)xik Aik

10



thus

1

Qik P ik + Ir PrCrk (18)

where the Ar must be chosen so that the constraints

R = 2 c rkQi k  (19)
ir l k-I

are satisfied. Equations (18) and (19) are simply discrete analogs of (5) and

(6).

When p and q are given by (13) and

K N
q() T J k=Z (I/Qik)exp(-xik/Qik)

(cf. (17)), the cross entropy (8) can be calculated explicitly:

Kr[NQ!k Q. V
H(qp) W I: (-: _ _ log !- 1) . (20)

i-I k=l\Pk P ik

The quantity in brackets is a discrete analog of the Itakura-Saito distortion

measure L121, L161 of P i with respect to Qi; cross-entropy minimization is

thus equivalent to choosing the Qi so as to minimize the sun of

Itakura-Saito distortions. We obtain an alternative derivation of (18) by

minimizing the right side of (20) directly, subject to the constraints (19).

Namely, we form the expression

(Qik log - +Z, CrkQik

i1 k-l Pik Pik / r- Ju

11



involving Lagrange multipliers Pr, and we set the partial derivative with

respect to each Qik equal to zero:

M
I/Pik -/Qk + I Prcrk = 0 

This yields (18).

III. PROPERTIES

In this section we discuss three miscellaneous properties of our

multi-signal method. We call the first "order preservation"; briefly, it

states that the method preserves the relative magnitudes of the priors. The

second, "preservation of independence," is related to the assumption of

statistical independence of the processes si; it follows from a

generalization of the property of cross-entropy minimization that was called

"system independence" in [7] and [14]. The third is related to a phenomenon

that we call "prior washout" and that occurs when a posterior resulting from

one analysis is used as a prior for a subsequent analysis; we compare and

contrast the behavior of the single- and multi-signal methods in this

situation.

A. Order Preservation

Let Pi and P. be two prior spectra and Qi and Q. be corresponding

posterior spectra resulting from a multi-signal MCESA analysis. The

order-preservation property is the observation that for each frequency fk we

have Qi < Q., Qi - Qj, or Qi > Q. if and only if Pi < P.,

Pi M P., or Pi > P. respectively. This follows from the form of the

representation of the Qi in (5). The property accords well with intuition:

12



if we expect a priori that s. has greater power than sj at frequency fk'

that expectation should not be altered by new information that concerns only

the sum of the two powers.

B. Preservation of Independence

In (13), we wrote the prior probability density p in the form

KpT - TT Pi(Xi )

(cf. (12)) to reflect the initial assumption that the x. are independent.

Preservation of independence is the property that the posterior density q has

the same form,

Kq(x) - TTqi(Bi )

(cf. (17)), so that the x. remain independent after the prior density is

replaced by the posterior. This posterior independence would be a simple

consequence of the system independence property of L71 and [14] if the

constraints (16) were of the form

r J Sdx qt()Xi(r))

-- that is, if each constraint involved only one of the sets xi of variables

(where which set was involved might depend on the constraint). System

independence was one of the consistency axioms in [7]; informally, it states

that it doesn't matter whether independent constraint information about

separate systems with independent priors is accounted for separately, for each

system, or jointly, by treating the system as one composite system. In the

13



present case, the constraints have the more general form

SK
R x qt(x) _ (x

r Jd - ri i

-- each constraint involves a linear combination of functions, each involving

one of the x.. Nevertheless, posterior independence still follows fromj

prior independence in this more general case.

C. Prior Washout

The phenomenon we are here calling "prior washout" was mentioned in 114]

in connection with "Property 14." Property 14, in slightly specialized form,

states the following. Let p be a prior probability density. Let 1 (1 ) and

1(2) be sets of constraints of the form (7), but with the right side

-0() (1) -(2) t(2) , (l)
replaced by gr for I and by gr for I that is

fo(2)an ();tht ,~l

and I(2) both constrain the expectations of the same set of functions gro

but the expected values may differ. Then, in terms of the 0 operator,

(p 0 t(l)) 0 J(2) . p 0 J(2) ;

the effects of taking the information I( 1) into account are completely

washed out when 1(2) is taken into account.

One consequence of prior washout is a similar property of single-signal

MCESA. For definiteness, consider a speech-processing system; say we wish to

estimate the speech spectra S (1), S(2 ), ... in a succession of analysis

frames, and we can measure the speech autocorrelations 
R ( 1)

r

R(2 )  ... in these frames at a fixed set of lags r. Starting with a
r

prior spectral estimate P, suppose we form a posterior estimate Q(i) for a

14



IM
frame i by taking the autocorrelation information R(i) into account.

Suppose we then use this posterior Q as a prior estimate for a later

frame j and obtain a posterior estimate for that frame by taking R into

account. Prior washout implies that the result Q(J) is the same that we

would have gotten if we had used P instead of Q(i) as the prior estimate for

frame j; taking R into account completely washes out the effects of

having taken R(i) into account.

This property has implications for certain noise-suppression schemes in

which one might envision using HCESA. Suppose that additive noise is present

in a speech-analysis system. It is often possible to detect whether or not

speech is present in an analysis frame. If frame i is such a frame, then

Q M is an estimate of the noise spectrum. Since the noise spectrum

contains information about part of what is likely to be present in a later

frame j that contains speech plus noise, it follows that using Q(i) as a

prior for frame j might result in more accurate estimation of the total

spectrum in that frame, thus allowing more accurate compensation for the

noise, say by subtraction of the noise spectrum. (On the other hand we might

worry that this procedure would unduly enhance the noise component of the

later estimate, thus further degrading the speech.) However, if the analyses

of frames i and j are based on the same set of autocorrelation lags, prior

washout occurs, and the use of Q(i) as a prior for frame j has no effect

whatever on the result Q(J) of the analysis in frame j.

Although the same property holds for multi-signal MCESA, a combination of

single-signal and multi-signal MCESA can be used to avoid prior washout and

exploit the results of analyzing frames containing noise only. In particular,

during a frame wher. speech is absent, obtain an estimated noise spectrum by a

15



single-signal analysis. Use this spectrum as a prior noise estimate, together

with some other appropriate spectrum as a prior speech estimate, for a

multi-signal analysis in later frames. A procedure of this sort is

illustrated in section IV.

The reason that prior washout does not occur in this case is that the

initial computation of the estimated noise spectrum uses constraints on noise

autocorrelations values, while the subsequent computations use constraints on

total autocorrelations; thus different sets of functions are being

constrained. In fact, let PN be the prior used in obtaining the initial

noise spectrum Q(l) by single-signal MCESA. Then Q(1) has
estimated noihas

components at frequency fk of the form

1(1),
QNk UP1/'Nk + Er rcCrk

If QN is used as a noise prior in later computations, and a spectrum

P is used as a speech prior, the resulting noise and speech posteriors

Q(2) and Q have the form
N

I

Q(2) - , (21)
Nk 1/PNk + Zr Prcrk + Zr PrCrk

Q(2) (22)
Sk UP Sk + Ir /'Crk

If PN were used in place of Q () in the later computations, the

16



resulting posteriors would have the form

,(2) (23
QNk I/PNk + Ir Prcrk (23)

Q(2) (24)
~Sk -/P Sk + (Crk

Now, for linearly independent constraints, (21) and (23) are compatible only

if *r -)Sr +'r holds, and (22) and (24) are compatible only if

r ' holds. Thus the analog of prior washout will not in general

occur here unless 0 holds -- that is, unless Q () P

IV. EXAMPLES

In this section we present two numerical examples; in each, a I&iven set of

data is analyzed both by multi-signal HCESA and by either single-signal MCESA

or a conventional MESA method. In the first example, autocorrelations at a

small number of equally spaced lags are computed from the sum of a pair of

assumed "true" spectra, and single- and multi-signal MCESA estimates are

obtained from them. In the second, autocorrelations are estimated from sums

of speech-signal and noise samples, and spectral estimates are obtained by

MESA and multi-signal MCESA.

The assumed original spectra for the first example are a pair SB and

SS, which we think of as a known "background" component and an unknown

"signal" component of the total spectrum. For numerical purposes we use the

spectral powers SBk and SSk at a hundred equally spaced frequencies fk a

+.005l +.015, ... , ±.495 between -.5 and +.5 (the Nyquist band: we take the

spacing between autocorrelation lags to be unity). The background consists of

17
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an approximation to white noise plus a peak corresponding to a sinusoid at

frequency .215:

(1.05, fk - +.215
SBk = .05, otherwise

The signal term consists of a nearby, similar peak at frequency .165:

S 
fk 165

Sk 0, otherwise

Thus the total assumed spectrum SB + SS is as shown (for positive

frequencies) in figure 1. Here are the corresponding autocorrelations R at
r

six lags t = 0, 1, ... , 5:
r

t 0 1 2 3 4 5r

R 9.0000 1.4544 -2.7732 -3.2248 0.2032 2.6900
r

For the multi-signal calculation, we use a pair of prior spectral

estimates P and P Since we are assuming prior knowledge of the
B S,

background spectral component SB, we simply take PB - SB as shown in

figure 2. To reflect prior ignorance of the signal component 5S, we take

PS to be uniform as in figure 3; for this example we have somewhat

arbitrarily normalized PS to have the same total power as PB" For the

single-signal calculation, we use P - PB + PS as the prior spectral

estimate.

Figure 4 shows the result of the single-signal analysis -- the MCES&

posterior estimate Q obtained from the prior estimate P and autocorrelations

R . Corresponding to the "known" peak at frequency .215 (which was includedr

in the prior) there is a sharp peak in the posterior at that frequency;

corresponding to the "unknown" peak at frequency .165 there is a maximum at

18
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approximately that frequency that is broader than the first, but resolvable

from it.

The same original spectra SB and SS and the same autocorrelations Rr

were used in an example in 11]. There a MESA and an MCESA spectral estimate

were compared (see figures 5 and 6 in ti]). The MESA estimate failed to

resolve the two peaks and showed a single maximum at about the mid-frequency.

The MCESA estimate was based on P instead of P + P as a prior; the
B B P~sa ir h

result differed from figure 4, but was qualitatively similar. In both cases,

the MCESA estimate implies the presence of the signal at frequency .165, but

does not provide a numerical estimate of the signal. Such an estimate is

provided by multi-signal MCESA.

The two individual posterior estimates QB and QS from the multi-signal

analysis are shown in figures 5 and 6. The sharp peak at frequency .215 is

seen to be correctly assigned entirely to the background posterior QB --

unsurprisingly, since it was present in the background prior but not the

signal prior. The broader maximum corresponding to the original peak at

frequency .165 is present in the signal posterior QS and is also present,

though less prominent, in QB" To understand why, qualitatively, consider

that the autocorrelations depend only on the total spectrum; the

autocorrelation constraints can equally well be satisfied by allocating

spectral power near frequency .165 to QB' or to QS. By the discussion in

section II, the relative magnitudes of the posteriors at each frequency

depend on the relative magnitudes of the priors. Both PB and PS are flat

near frequency .165, and because of the normalization chosen, P is somewhat

greater there. Consequently, the broad maximum in QS is somewhat greater

than that in QB"
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Fig. 5 -- Multi-signal MCESA posterior estimate of background spectrum
(first example)

1.25.

1.00.

3: 0.75.
2

I- 0.50
U)

0.25

0.00
0.00 0.10 0.20 0.30 0.40 0.50

FREQUENCIES

Fig. 6 -Multi-signal MOESA posterior estimate of signal spectrum
(first example)
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The second example is based on time-domain samples of voiced speech and

noise. The speech comprises a portion of an English sentence spoken by a male

speaker and includes the first word, "Sue," of the sentence together with

silent segments before and after it. The noise consists of a segment of

helicopter noise equal in duration to the speech. These were separately

filtered, sampled, and digitized at 8000 samples per second. The speech and

noise data were then added sample by sample, resulting in samples of noisy

speech. These samples were segmented into analysis frames of 180 samples, and

11 autocorrelations Rr, r - 0, 1, ..., 10 were estimated for each frame by

the formula

180-r

r 180 .= 1j j+r'

where s. is the * sample in the frame. This is a biased estimate butJ

guarantees positive-definiteness. No additional windowing or filtering was

used.

The last frame before the actual beginning of the word was selected; this

frame of "noisy speech" thus consisted entirely of noise. From the

autocorrelation estimates for this frame, a conventional MESA (i.e.

uniform-prior HCESA) spectral estimate was computed for use as a prior

estimate of the noise spectrum in subsequent frames. A uniform spectrum was

used as a prior estimate for the speech spectrum in the subsequent frames.

These two priors are shown in figure 7. much of the noise power is

concentrated in a peak near 2780 z.

From the two priors and the autocorrelation estimates, multi-signal MCESA

estimates of the speech and noise spectra were computed for later frames.

From the autocorrelation estimates, MESA (LPC) spectral estimates were
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(second example)

24



computed for the noisy speech. We present the results for a selected frame of

voiced speech--the second of seven that span the vowel /u/. For comparison

with these results, we present in figure 8 a MESA estimate of the uncorrupted

speech. This was computed exactly like the MESA estimate for the noisy speech

except that the R were estimated from the speech samples only, not from ther

sums of speech and noise samples.

The MESA estimate for the noisy speech is shown in figure 9. This

spectrum agrees rather well with the noise-free estimate in the band from 0 up

to about 2000 Hz, which includes the first two formants. Above 2000 Hz,

however, there is only a single maximum; the third and fourth formants have

merged with the peak in the noise spectrum to form a single peak at about 2690

Hz.

We subtracted the noise prior (figure 7) from this result (figure 9). The

difference, shown in figure 10, represents an attempt to estimate the speech

spectrum by a MESA analysis and spectral subtraction. The subtracted MESA

spectrum is fairly close to the unsubtracted MESA spectrum except in the

neighborhood of the noise peak at 2780 Hz. Near that frequency, the

subtraction so far overcompensates that the difference actually assumes rather

large negative values. (Absolute values are plotted in the figure.)

The multi-signal MCESA posteriors are shown in figures 11 and 12; figure

11 is the speech, and figure 12 is the noise. Figure 12 shows a maximum near

2440 Hz, about 130 Hz higher than the third formant, and a suggestion of the

fourth formant is discernible. Except for frequencies near the noise peak,

the multi-signal speech spectrum (figure 11) and the subtracted MESA result

(figure 10) are quite close, the multi-signal result being usually the closer

of the two to the estimate based on noise-free data (figure 8). Near 2780 Rz,
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spectrum in figure 9 (second example)
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the multi-signal result is substantially closer, and where the subtracted MESA

becomes negative, the multi-signal estimate takes only physically meaningful

positive values. Both methods underestimate the total power near 2780 Hz (cf.

figure 12); however, the multi-signal method apportions the total between

speech and noise in a somewhat reasonable way, whereas the other does not.

V. DISCUSSION AND CONCLUSIONS

Multi-signal MCESA is a new spectrum-estimation method based on a provably

optimal information-theoretic inductive-inference procedure. When separate

prior estimates are available for the power spectra of two or more processes,

and new information is obtained in the form of values of the autocorrelation

function of their sum, the method yields separate posterior estimates. One

suggested application is separating the spectrum of a signal from that of

additive noise. By incorporating prior estimates for both signal and noise

spectra, the multi-signal method offers considerable scope and flexibility for

tailoring an estimator to the characteristics of a signal or noise.

In the second example in section IV we contrasted this method with a more

ad-hoc method for taking a prior noise estimate into account -- estimate the

sum of signal and noise spectra from autocorrelations and then subtract the

prior noise estimate. The latter method seems to imply an unwarranted

absolute commitment to the noise-spectrum estimate: adjustments to the

signal-spectrum estimate are made solely responsible for fitting the

autocorrelation of the sum to measured values. The multi-signal method, by

contrast, adjusts both noise and signal estimates in fitting the

autocorrelation of the sum. We saw that the multi-signal method could thereby

avoid nonphysical (negative) estimates that can result from spectral
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subtraction. Of course, whether or not the multi-signal method can improve

speech quality must be determined by systematic experiments involving speech

synthesis and intelligibility testing. We hope to do such experiments in the

*future.

In the same example, a prominent noise peak was present in the sum

spectrum. Most of the power in it was properly attributed to the noise

spectrum in the posteriors, but substantial leakage a few db lower into the

signal (speech) spectrum occurred. The relative apportionment of the power in

that peak between the signal and noise posteriors would be substantially

altered by a change in the level of the uniform spectrum that was used as the

speech prior. This is in contrast to single-signal MCESA, where all uniform

priors give equivalent results (as long as one of the constrained

autocorrelations is the total power). How best to choose the level of this

uniform prior relative to the noise prior is a question not yet answered.

Indeed, since the signal is known to be speech, it would undoubtedly be

beneficial to replace the uniform signal prior with one tailored to the

characteristics of speech. How best to do this tailoring is another

unanswered question. In short, there is much to be learned about how to

choose the prior estimates to reflect our prior knowledge of signals and noise

in practical situations.
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